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Introduction: Ice on Mars

* Could be a resource for future human
exploration

* Gives insight into Mars’ climate history
* Purity
* Distribution
* Depth

Image credit: NASA/Pat Rawlings



Signs of Subsurface Ice

* Scallops and expanded craters: collapse by sublimation of
subsurface ice

* Pedestal craters: ice armored by ejecta, lost in surroundings
* Lobate debris apron: debris covered glaciers
* Banded terrain: possible viscous flow of an ice layer

Scalloped depressions  Expanded craters Pedestal craters Lobate debris apron Banded terrain
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What are the properties of ice in Hellas
Planitia?



Methods: Radar

* Allows us to probe the subsurface

» Radar reflects off the interface between
materials with different dielectric
constants

* Dielectric constant relates to the speed at

which electromagnetic waves move
through a material

* SHAllow RADar (SHARAD) on the Mars
Reconnaissance Orbiter

* Looked at radargrams for 368 tracks
covering Hellas Planitia
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Radargram
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Methods: Clutter

» Reflections from off-nadir surface topography
e Can appear at delay times similar to subsurface reflectors

* To avoid: compare to simulations of what the radar would see based
solely on surface topography

Radargram Clutter simulation



Clutter simulation
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Radargram
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Clutter simulation
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Radargram
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Methods: Confidence Rating

 Lower confidence in those that are absent from the simulations
but contiguous with clutter or have some curvature, which is
common to clutter

* Higher confidencein those that are not contiguous with clutter
or curved

Contiguous with clutter Curved



Methods: relationship to ice features

* For reflectors we have higher confidence in, looked at
Context Camera (CTX) images of the area to identify features
potentially associated with ice

Scalloped depressions Expanded craters Pedestal craters Lobate debris apron Banded terrain



higher confidence reflectors

clutter contiguous reflectors

curved reflectors
contiguous and curved reflectorsg

scalloped depressions

Scallops and expanded
craters from Viola D. and
McEwen A.S.(2018), JGR




Results: 649 reflectors

* Higher confidence: 413

Scalloped Pedestal craters: 3 Lobate debrisapron: 1  Banded terrain: 5
depressions: 23

Near but not associated

with pedestals

themselves: 18



Scalloped Depressions

Radargram Overhead view



Scalloped Depressions
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Other features: ice thicknesses

Pedestal craters Lobate debris apron Banded terrain

*103 m * Upto1lkm * 265 m on average




Conclusions

e We found radar reflectors near terrain associated with ice in
Hellas Planitia

e These reflectors allow us to constrain the thickness of the ice

» Reflectors are 100s of meters deep if associated with the bottom of the
ice layer

e Future work:

* Additional analysis of reflectors near scalloped depressions to
determineice purity

* Additional analysis of reflectors near other features like pedestal craters
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